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ABSTRACT

This paper describes the development of convolutional neural networks (CNN), a type of deep-learning

method, to predict next-hour tornado occurrence. Predictors are a storm-centered radar image and a prox-

imity sounding from the Rapid Refresh model. Radar images come from the Multiyear Reanalysis of

Remotely Sensed Storms (MYRORSS) andGriddedNEXRADWSR-88DRadar dataset (GridRad), both of

which are multiradar composites. We train separate CNNs on MYRORSS and GridRad data, present an

experiment to optimize the CNN settings, and evaluate the chosen CNNs on independent testing data. Both

models achieve an area under the receiver-operating-characteristic curve (AUC) well above 0.9, which is

considered to be excellent performance. The GridRad model achieves a critical success index (CSI) of 0.31,

and the MYRORSS model achieves a CSI of 0.17. The difference is due primarily to event frequency (per-

centage of storms that are tornadic in the next hour), which is 3.52% for GridRad but only 0.24% for

MYRORSS. The best CNN predictions (true positives and negatives) occur for strongly rotating tornadic

supercells and weak nontornadic cells in mesoscale convective systems, respectively. The worst predictions

(false positives and negatives) occur for strongly rotating nontornadic supercells and tornadic cells in quasi-

linear convective systems, respectively. The performance of our CNNs is comparable to an operational

machine-learning system for severe weather prediction, which suggests that they would be useful for real-time

forecasting.

1. Introduction

Tornadoes are one of the costliest weather disasters

in the United States (Insurance Information Institute

2019). The National Weather Service (NWS) is re-

sponsible for issuing tornado warnings and generally

issues warnings at lead times up to 30min (Brooks and

Correia 2018), with durations up to 60min (Harrison

and Karstens 2017). Although the skill of NWS tornado
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warnings has generally improved over time, critical

success index (CSI) and lead time have stagnated in

the last decade (Brooks and Correia 2018). During

this time, the amount of data available to forecasters

has exploded—including dual-polarization radar ob-

servations, high-resolution satellite observations, and

forecasts from convection-allowing models (CAM).

However, none of these datasets explicitly resolves

tornadoes, so they must still be translated into useful

information by forecasters, which can lead to cogni-

tive overload (Wilson et al. 2017). This problem can

be alleviated by explicit tornado-modeling and post-

processing methods, the latter of which combine

multisource data into explicit tornado predictions

(Karstens et al. 2018).

Much work in this area falls under the Warn-on-

Forecast initiative (WoF; Stensrud et al. 2009, 2013).

The main goal of WoF is to shift the current warning

paradigm from extrapolation based on current ob-

servations (warn on detection) to use of short-range

CAM simulations. This effort includes creating ex-

plicit probabilistic tornado forecasts at 0–1-h lead

times. CAMs typically have 1–4-km horizontal grid

spacing, which allows them to explicitly resolve some

thunderstorms but not individual hazards such as

tornadoes.1However, CAMs do resolve midlevel and

sometimes low-level mesocyclones, which are necessary

precursors for supercell tornadogenesis (Davies-Jones

et al. 2001; Markowski and Richardson 2009, 2014).

Yussouf et al. (2015) andWheatley et al. (2015) ran 3-km

CAM ensembles for several tornado outbreaks, at lead

times up to 1 h, and skillfully simulated the low-level

mesocyclone inmany storms. A longer-term goal ofWoF

is to establish ‘‘the feasibility of explicit ensemble prob-

abilistic prediction of tornadoes’’ (Snook et al. 2019).

With this aim, Snook et al. (2019) ran a 50-m CAM

ensemble for one storm, with all members correctly

producing a tornado and 4 of 10 members correctly

producing winds of EF5 strength. Themain shortcoming

of 3-km models is their inability to explicitly resolve

tornadoes, while 50-m models are too computationally

expensive to run in real time (and may continue to be

for decades).

For non-tornado-resolving CAMs, storm surrogates are

often used to relate resolved quantities to tornado occur-

rence. Themost popular surrogate is updraft helicity (UH;

Kain et al. 2008), which is the height-integrated product of

vertical velocity and vertical vorticity. To create a surro-

gate severe probability forecast (SSPF; Sobash et al. 2011),

UH is thresholded to create a binary mask (0 or 1 at each

grid point), which is then smoothed via kernel density

estimation. The UH threshold and smoothing radius are

chosen to maximize predictive skill, defined by how well

the forecastmatches ‘‘ground truth,’’ whichmay consist of

observed tornadoes or a proxy such as radar-derived ro-

tation tracks. The main disadvantage of the former is

underreporting bias in sparsely populated areas, discussed

in section 3a; the main disadvantage of the latter is that in

many places the radar network does not have sufficient

resolution and low-level coverage to identify tornadoes.

Sobash et al. (2011) is the first study to use SSPF,

predicting the probability of any severe weather.2 In

later work, Sobash et al. (2016b) applied SSPF to aCAM

ensemble, outperforming the same technique applied

to a deterministic CAM. Sobash et al. (2016a) was the

first study to use SSPF to discriminate between torna-

dic and nontornadic storms, obtaining skillful next-day

predictions at the larger smoothing radii ($160 km).

Gallo et al. (2016) used a similar approach but incor-

porated near-storm environment (NSE) variables, such

as convective available potential energy (CAPE) and

the significant-tornado parameter, which greatly re-

duced overprediction of tornadoes. While the afore-

mentioned studies focused on 1–2-day lead times, SSPF

is run annually on a 3-km CAM ensemble in the

Hazardous Weather Testbed (HWT; Clark et al. 2012;

Gallo et al. 2017), where the focus is on 0–3-h lead

times, and skillfully predicts radar-derived rotation

tracks (Skinner et al. 2018).

Another widely used postprocessing approach is ma-

chine learning (ML). One of the earliest efforts was the

NSSL Severe Weather Potential algorithm (Kitzmiller

et al. 1995), a linear-regression model that predicted any

severe weather in the next 20min. Marzban and Stumpf

(1996) used neural networks to predict tornadogenesis

for a givenmesocyclone in the next 20min. Lakshmanan

et al. (2005) and Adrianto et al. (2009) used fuzzy logic

and support-vector machines, respectively, to produce a

spatiotemporal tornado-probability grid for the next

30min. Because of computational limitations at the

time, the aforementioned studies used only radar data as

predictors. Gagne et al. (2012) trained a spatiotempo-

ral relational random forest with radar data, surface

observations, and NSE variables from a reanalysis

to predict tornado probability for a given supercell.
1 Physical models cannot resolve features with a length scale of less

than ;6dx, where dx is the horizontal grid spacing. Thus, coarser-

resolution (4 km) CAMs cannot resolve small thunderstorms.

Similarly, the 50-m CAMs mentioned later in this paragraph can-

not resolve small tornadoes.

2 Hereinafter defined as a tornado, hail with diameter$ 25.4mm, or

wind gust$ 25.7m s21.
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They found that many of the best predictors came from

the surface and NSE datasets. Cintineo et al. (2014, 2018)

developed an operational algorithm called ProbSevere,

which uses naïve Bayes to forecast any severe weather

for a given storm. Their predictors are derived from

radar, satellite, and lightning data, as well as NSE

variables from the Rapid Refresh model. ProbSevere

has run in the HWT for several years, receiving fa-

vorable feedback from forecasters. It has improved

upon themedian lead time of NWS tornado and severe-

thunderstorm warnings but at the cost of a decrease in

CSI (Cintineo et al. 2018).

Convolutional neural networks (CNN) are specially

designed to learn from spatial grids and often contain

many layers, which qualifies them as a deep-learning

method (section 1.1.4 of Chollet 2018). In traditional

ML, spatial grids must be transformed into scalar fea-

tures, which become the direct inputs to the model.

Examples are principal components, spatial statistics

(such as means and standard deviations), and raw grid-

point values (where each value in the grid is treated as a

scalar feature, with no regard to spatial structure).

Inevitably, since the transformation to scalar features is

done as a preprocessing step rather than informed by

ML, it does not optimally exploit the spatial information

available. In contrast, spatial grids are fed directly into a

CNN, which simultaneously learns to transform the

grids into features and the features into predictions. This

synergy generally improves skill (Krizhevsky et al. 2017;

Dieleman et al. 2015; Silver et al. 2016) and reduces the

amount of preprocessing needed, relative to traditional

ML methods. CNNs have been used in atmospheric

science to estimate sea ice concentration (Wang et al.

2016) and tropical-cyclone intensity (Wimmers et al.

2019) from satellite images, detect extreme-weather

patterns in model output (Racah et al. 2017; Kurth

et al. 2018; Lagerquist et al. 2019), replace subgrid-scale

parameterizations in numerical models (Bolton and

Zanna 2019), and improve the understanding and predic-

tion of convective hazards (McGovern et al. 2019; Gagne

et al. 2019). CNNs are becoming popular tools in the ge-

osciences at large, andReichstein et al. (2019) andGil et al.

(2019) have recently called for a vast expansion of our

efforts to incorporate deep learning into the geosciences.

This paper describes the development and testing of

CNNs to predict next-hour tornado occurrence. In ad-

dition to their ability to learn relevant spatial features at

multiple scales, CNNs, like other ML methods, can ef-

fectively leverage data from multiple sources (Gagne

et al. 2012; Cintineo et al. 2014, 2018). Specifically, the

predictors used in this study (for each storm) are a

storm-centered radar image, representing the storm it-

self, and a numerically modeled proximity sounding,

representing the ambient environment through which

the storm is moving. The two datasets have very differ-

ent characteristics (i.e., radar data are 2D or 3Dwith high

spatial resolution, while soundings are 1D with lower

spatial resolution), which would present amajor difficulty

for non-ML-based postprocessing methods such as SSPF.

The rest of this paper is organized as follows. Section 2

briefly describes the inner workings of CNNs [a more

thorough description is provided in Lagerquist et al.

(2019), hereafter L19], section 3 describes the input data

and preprocessing, section 4 describes experiments used

to find the best CNNs, section 5 evaluates performance

of the best CNNs, and section 6 summarizes and dis-

cusses future work.

2. Convolutional neural networks

As shown in Figs. 1 and 2, a CNN contains three types

of specialized layers: convolutional and pooling layers,

which turn the input maps into abstractions called

‘‘featuremaps,’’ and dense layers, which turn the feature

maps into predictions. Maps received by the first con-

volutional layer (leftmost in Figs. 1 and 2) contain raw

weather fields; maps received by deeper layers are fea-

ture maps, containing transformations of the raw fields.

The number of featuremaps increases with depth, which

increases the number of features that can be learned.

The convolution operator is defined in Eq. (4) of L19 and

animated in our Fig. S1 in the online supplemental ma-

terial. Convolution is both spatial and multivariate, so it

encodes spatial patterns that combine all input variables.

Each convolutional layer applies two operations after

the convolution itself: activation and batch normalization.

Activation is a nonlinear function applied elementwise to

the feature maps. Without activation functions, the CNN

could learn only linear relationships, because convolution

is a linear operation. A popular activation function is the

leaky rectified linear unit (ReLU;Maas et al. 2013), used

in this work. Activation is followed by batch normali-

zation (Ioffe and Szegedy 2015), which is also applied

elementwise to the feature maps. Batch normalization

transforms each element to approximately a Gaussian

distribution,3 with mean of 0.0 and standard deviation of

1.0. This speeds up learning (Ioffe and Szegedy 2015)

and alleviates the vanishing-gradient problem that arises

in neural networks with many layers (see section 1 of

L19 for a detailed discussion).

3 Batch normalization is applied separately to each batch of N

training examples. Thus, for element x of the feature maps (one

variable at one grid point), it forces x to approximately a Gaussian

distribution over the N examples.
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A pooling layer downsamples feature maps, using

either a maximum or mean filter. Each map is down-

sampled independently. Following common practice,

this work uses a maximum filter with downsampling

factor of 2, which halves the spatial resolution (doubles

the grid spacing). For example, in Fig. 1, pooling layers

increase the horizontal spacing from 1.5 to 3.0 to 6.0km,

which allows deeper convolutional layers to learn larger-

scale features. This, combined with the fact that feature

maps in deeper layers have passed through more convo-

lutions and nonlinear activations, allows deeper layers to

learn higher-level abstractions. The pooling operation is

animated in Fig. S2 of the online supplemental material.

The dense layers (called ‘‘hidden layers’’ in chapter 6

of Goodfellow et al. 2016) transform feature maps into

predictions. Since the dense layers are spatially agnostic,

feature maps are flattened into a 1D vector before

they are passed to the dense layers (Figs. 1 and 2).

Each feature in one dense layer is a weighted sum of

those in the previous layer. All dense layers except the

last follow this linear transformation with leaky ReLU

and batch normalization, like the convolutional layers.

The last dense layer uses the sigmoid activation function

(section 6.2.2.2 of Goodfellow et al. 2016), which forces

the output to range over [0, 1], allowing it to be in-

terpreted as a probability. The last dense layer does not

use batch normalization, because this would force the

outputs to a Gaussian distribution, which permits values

outside [0, 1] and is therefore invalid for probabilities.

The convolutional and dense layers contain all ad-

justable weights in the CNN. These weights are initial-

ized randomly and fit during training to minimize cross

entropy [Eq. (1)]. In Eq. (1), pi is the forecast tornado

probability and yi is the true label (1 if tornadic and 0

otherwise) for the ith example, N is the number of ex-

amples, and « is the cross entropy, ranging over [0, ‘).

FIG. 1. Architecture of CNN trained with GridRad data. The feature maps in (b)–(e) are shown only for the lowest height and use a

diverging color scheme, with negative values in blue and positive values in red. (a) Radar predictors, consisting of a 323 323 12 grid with

four maps. For the sake of brevity, only 3 of 12 radar heights are shown and sounding predictors are not shown. Also shown are feature

maps produced (b) by the first convolutional layer, after activation and batch normalization; (c) as in (b), but by the second convolutional

layer; (d) as in (b), but by the last convolutional layer; and (e) by the last pooling layer. The flattening layer transforms these maps into a

vector of length 2048 (43 43 13 128), which is concatenatedwith sounding features produced by 1D convolution and pooling (Fig. D1 in

the online supplemental material). The dense layers transform this concatenated vector into representations of exponentially decreasing

length (2816 / 53 / 1), and the final output is next-hour tornado probability.
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Lower valuesmean that there is a better correspondence

between predictions and labels:
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3. Data description and preprocessing

We use three datasets to create predictors: the

Multiyear Reanalysis of Remotely Sensed Storms

(MYRORSS; Ortega et al. 2012), Gridded NEXRAD

Weather Surveillance Radar-1988 Doppler (WSR-88D)

radar dataset (GridRad; Homeyer and Bowman 2017),

and Rapid Refresh4 numerical weather model (RAP;

Benjamin et al. 2016). Characteristics of these datasets

are summarized in Table 1. For each storm we use

MYRORSS or GridRad to create a storm-centered radar

image, representing the storm at forecast time, and the

RAP to create a proximity sounding, representing the en-

vironment in which the storm will evolve over the next

hour. Both types of information are critical to storm evo-

lution and the development of hazards such as tornadoes.

We use NWS storm reports (National Climatic Data

Center 2020) to determine when, if at all, the storm is tor-

nadic. We train separate CNNs with MYRORSS and

GridRad and test both CNNs on the one year of overlap

(2011; see Table 1). Using both datasets demonstrates the

generalizability of our methods and results, especially pat-

terns leading to the best and worst predictions (section 5).

Section 3a describes these datasets in more detail,

while the remaining sections 3b–3d discuss preprocessing

methods. Sections 3b and 3c describe storm tracking and

tornado attribution, used to link tornadoes to storms, and

section 3ddescribes the creation of predictors. SectionA in

the online supplemental material describes the estimation

FIG. 2. Architecture of CNN trained with MYRORSS data. The feature maps in (c)–(f) use a diverging color scheme, with negative

values in blue and positive values in red. (a),(b)Radar predictors, consisting of a 1283 128 grid with 14maps.Also shown are featuremaps

produced (c) by the first convolutional layer, after activation and batch normalization; (d) as in (c), but by the third convolutional layer;

(e) as in (c), but by the last convolutional layer; and (f) by the last pooling layer. As in Fig. 1, the flattening and dense layers transform

radar- and sounding-derived features into next-hour tornado probability.

4 For initialization times before 1 May 2012, we use the Rapid

Update Cycle (RUC; Benjamin et al. 2004), which was replaced by

the RAP on 1 May 2012.
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of storm velocity, used for all preprocessing methods dis-

cussed in themain text, and supplemental sections B andC

describe echo classification and storm detection, used to

create the objects tracked by the algorithm in section 3b.

The rest of this paper will use the term ‘‘storm object’’ to

mean one storm cell at one time.

a. Data description

MYRORSS5 contains quality-controlled, merged data

from all WSR-88D (Crum and Alberty 1993) sites in the

contiguous United States (CONUS). Each radar scans a

different part of the atmosphere, and where multiple ra-

dars scan the same point, they generally have differing

resolution and errors.Merging data from all radars allows

the data to be represented on a common grid, and the

merging algorithm includes quality-control measures that

cannot be applied to single-radar data. The merging al-

gorithm is part of theWarningDecision Support System–

Integrated Information (WDSS-II; Lakshmanan et al.

2007), a software package for the visualization, analysis,

and forecasting of thunderstorms and their attendant

hazards. At each 5-min time step, MYRORSS contains a

3D reflectivity grid, plus 2D grids of low-level and mid-

level azimuthal shear (the azimuthal derivative of radial

velocity; Mahalik et al. 2019). Low-level shear is the

maximum from 0 to 2km above ground level (AGL), and

midlevel shear is the maximum from 3 to 6km AGL.

GridRad also contains merged data from WSR-88D

radars. The main differences between MYRORSS and

GridRad are different merging algorithms, time periods,

and variables (Table 1). Although the public GridRad

dataset (Bowman and Homeyer 2017) has 1-h time

steps, we have obtained 5-min data for 147 days.6 These

days represent a variety of scenarios—including large

tornado outbreaks, small outbreaks, and nonoutbreaks

in all seasons. The spatial domain for each day is dif-

ferent and generally not CONUS-wide, but the domain

usually covers a large portion of the CONUS, including

most tornadoes on the given day and many nontornadic

storms. At each 5-min time step, GridRad includes four

variables on the 3D grid: reflectivity, spectrum width,

vorticity (twice azimuthal shear), and divergence (twice

radial shear).

The RAP is a nonhydrostatic mesoscale model with

13- or 20-km grid spacing and covers much of North

America, including the full CONUS. The RAP is run

every hour and produces forecasts at 1-h time steps, at

37 pressure levels spaced equally from 100 to 1000mb.

We use the RAP instead of another physical model be-

cause the RAP has a long and mostly complete archive

(https://www.ncei.noaa.gov/thredds/catalog.html) and is

commonly used in convective meteorology, including as

the background field for the Storm Prediction Center

(2020) mesoanalysis. The disadvantage of operational

models like the RAP is that they change configurations

over time (e.g., Table 1 of Benjamin et al. 2016), creating

inhomogeneities that can negatively impact CNN per-

formance. However, our goal in this work is to create

CNNs that can be operationalized, so it is important to

use operational data as much as possible (see discussion

in section 6). Also, we have found that performance

[specifically, the area under the receiver-operating-

characteristic curve (AUC), defined in section 4] does

not decline from the training to validation/testing

data, which suggests that the CNNs do not overfit to

particular RAP configurations. However, this does

not rule out that a large configuration change in the

future could adversely affect the CNNs.

A known issue withNWS tornado reports is that many

tornadoes are unreported, especially in sparsely popu-

lated areas and at night (Doswell et al. 1999). This is why

some researchers use other datasets as ground truth,

such as radar-derived rotation tracks (e.g., Skinner et al.

2018). These tracks can directly resolve mesocyclones

but not tornadoes, which is a major disadvantage, be-

cause most mesocyclones do not produce tornadoes

TABLE 1. Summary of raw input data. Here, MSL indicates above mean sea level.

Dataset Time period Time step

Horizontal

spacing Vertical levels

MYRORSS reflectivity 2000–11 5min 0.018 0.25, 0.50, . . . , 3.00 kmMSL, then 3.5, 4.0, . . . , 9.0 km

MSL, and then 10, 11, . . . , 20 km MSL

MYRORSS shear 2000–11 5min 0.0058 Low level (max from 0 to 2 km AGL);

midlevel (max from 3 to 6 km AGL)

GridRad Selected days in 2011–18 5min 0.02088 0.5, 1.0, . . . , 7.0 km MSL and 8, 9, . . . , 22 km MSL

RAP May 2012–present 1 h 13 or 20 km 100, 125, . . . , 1000 hPa

RUC Apr 2002–Apr 2012 1 h 13 or 20 km 100, 125, . . . , 1000 hPa

5 Since theMYRORSS dataset is very large (;75 terabytes), it is

not available for public download. However, the data are available

upon request from author T. Smith.
6 Hourly data are available publicly via the Research Data

Archive (RDA; Bowman and Homeyer 2017), and 5-min data are

available upon request from author C. Homeyer; 5-min data will

eventually be publicly available on the RDA as well.
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(Trapp et al. 2005) and some tornadoes are not associ-

ated with mesocyclones. Thus, we use NWS reports

despite their population bias. We also evaluate the

CNNs for strong tornadoes only (enhanced Fujita scale

EF21; section 5), which have little to no population bias,

because they generally last long enough and cause

enough damage to be reported (Anderson et al. 2007;

Elsner et al. 2013).

b. Storm tracking

Storms are tracked over time via two algorithms,

called preliminary and final. The idea of two-stage track-

ing is motivated by WDSS-II, which uses ‘‘segmotion’’

(Lakshmanan and Smith 2010) for preliminary track-

ing and ‘‘w2besttrack’’ (Lakshmanan et al. 2015) for

final tracking. Our preliminary tracking (Fig. 3) is ap-

plied separately to each pair of consecutive time steps,

t1 and t2. Step 2 (linkage without extrapolation) serves

as a ‘‘second chance’’ to link storms, which is useful

because step 1 uses first-order backward differences to

estimate storm velocity (supplemental sectionA), which

are often noisy. Steps 1 and 2 both ensure that no more

than two storms at t1 can be linked to the same storm at

t2. Otherwise, more than two storms could merge into

one over 5min—which rarely, if ever, occurs in the real

atmosphere. Step 3 (pruning) ensures that no more than

two storms at t2 can be linked to the same storm at t1.

Otherwise, one storm could split into more than two

storms over 5 min, which is also implausible. The 9-km

distance threshold in steps 1 and 2 was chosen sub-

jectively. Based on visual inspection, smaller thresh-

olds often split one storm into several tracks, while

larger thresholds often connected several storms into

the same track.

The main shortcoming of the preliminary algorithm is

that it often ‘‘drops’’ a storm track for one time step,

FIG. 3. Flowchart for the preliminary storm-tracking algorithm. In step 1, the extrapolated locations of storms B

and C are within 9 km of storm D, so B and C are linked to D. Thus, storms B and C merge into D between times

t1 and t2. In step 2, storm C at time t1 is within 9 km of storm D at t2, so the two are linked. In the three-way split

shown for step 3, storm A is initially linked to three storms at the next time step; only the links to the two nearest

storms are kept. In the hybrid split andmerger shown for step 3, stormC at time t2 is involved in both a split (stormB

at t1 into storms C andD at t2) and a merger (stormsA and B at t1 into stormC at t2). The linkage between storms B

and C is severed, leading to the simplest solution (no splits or mergers).
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thus splitting one actual track into two tracks with a

10-min gap. One common reason is that the storm drops

below the echo-top threshold (supplemental section C)

for one time step, leaving no storm object to track.

Another is that, even though step 4 of the detection al-

gorithm (supplemental section C) partly alleviates this,

the storm center ‘‘jumps’’ erratically between time steps,

causing the distance between successive centers to ex-

ceed the 9-km threshold.

The result is often two nearly collinear storm tracks

with a small gap in the middle, like a piece of string that

has been cut in half. The final tracking algorithm joins

such pairs of tracks. The final algorithm is equivalent to

the preliminary algorithm (Fig. 3), with four excep-

tions. First, the difference between t1 and t2 is two time

steps (10min). Second, the final algorithm is applied

only to pairs of preliminary tracks in which one ends at

t1 and the other begins at t2. Third, velocity estimates

used in the final algorithm are third-order, rather than

first-order, backward differences. Computing higher-order

differences requires more computing time per track, but

the final algorithm considers only a small number of pre-

liminary tracks, which makes this computation feasible.

Fourth, the final algorithm skips step 2 (linkage without

extrapolation), because third-order velocity estimates are

much less noisy than first-order estimates, which obvi-

ates the need for step 2 as a ‘‘second chance.’’

Figures S3 and S4 of the online supplemental material

show animated tracking output for the GridRad and

MYRORSS data, respectively, on 26–27 April 2011.

c. Tornado attribution

The procedure shown in Fig. 4 is repeated for each

tornado. It is more complex than most spatial linkage

procedures, because the storm tracks include splits

and mergers. Before step 1, the tornado is interpo-

lated linearly to 1-min intervals between its start and

end locations (the only locations included in NWS

FIG. 4. Flowchart for tornado attribution. In step 1, each storm is interpolated to the time of the earliest unlinked

point in the tornado p. The dark-orange/green dots are storm centers, and the surrounding light-orange/green

polygons are storm outlines. The three cases for interpolation are explained in the main text. In step 2, p is linked to

the nearest interpolated storm object S, as long as S is close enough. In step 3, p is also linked to simple successors of

S. In step 4, if any point in the tornado is still unlinked, the algorithm returns to step 2 but considers only successors

of the latest storm object linked to the tornado. In step 5, any tornado point that is already linked to a storm object is

linked to simple predecessors of the given object.
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tornado reports), yielding the ‘‘tornado points’’ men-

tioned in Fig. 4. In step 1, each storm is interpolated to

the time of tornado point p, so that tornado-to-storm

distances can be calculated. This interpolation uses the

previous and next locations of each storm—by defini-

tion, at times t1 and t2, respectively. The three cases for

storm interpolation are explained below for clarity:

1) If the storm undergoes a merger (shown in Fig. 4)

between t1 and t2, interpolate from the midpoint of

the two storm centers at t1 to the actual storm center

at t2. Keep the storm boundary from t2.

2) If the storm undergoes a split (shown in Fig. 4) be-

tween t1 and t2, interpolate from the actual storm

center at t1 to the midpoint of the two storm centers

at t2. Keep the storm boundary from t1.

3) If the storm neither merges nor splits (not shown in

Fig. 4), interpolate between the two actual storm

centers. Keep the storm boundary from the time

nearest the tornado point.

In step 2, the distance used is between the tornado

point and the nearest storm edge. The 10-km threshold

accounts for tornadoes in weak-echo regions. Each storm

edge encloses an area with 40-dBZ echo top $ 4km

above sea level (section C), and smaller distance thresh-

olds cause tornadoes in weak-echo regions to be un-

linked. By visual inspection, all tornadoes .10km from

the nearest storm edge appear to be erroneous reports.

However, step 2 is not sufficient, because it does only

spatial attribution (links to one storm object, which is

one storm at one time). The ultimate goal of tornado

attribution is to know, at each time, which storms are

responsible for a tornado in the next hour. This re-

quires temporal linkage, which is done by steps 3–5.

Specifically, if a tornado is linked to storm object S in

step 2, step 3 links the tornado to simple successors of S

(future storm objects linked to S by any track without a

split) that occur during the tornado’s lifetime. In Fig. 4

this encodes the fact that storm B is tornadic from 15 to

20min, stormD is tornadic from 25 to 35min, and stormE

is tornadic from 40 to 50min. If necessary, step 4 links the

tornado to nonsimple successors of S (those created by a

split), because in such cases it is not obvious which of the

two postsplit storms, if either, remains tornadic. In step 5,

the tornado is linked to simple predecessors of S. This

encodes the fact that certain storm objects are responsible

for tornadoes in the future, even if they are not tornadic at

their valid time. The definition of ‘‘simple predecessor,’’

used in step 5, is explained below for clarity:

1) If stormC splits into stormsD andE, then eitherD or

E produces a tornado, the tornado is also attributed

to C. See example 2 in Fig. 4.

2) If storm A splits into B and C, then C splits into D

andE, thenD or E produces a tornado, the tornado is

not attributed to A. We assume that storm character-

istics change enough over two splits that stormA only

negligibly impacts the tornado potential of storm

D or E. See example 2 in Fig. 4.

3) If storms X and Y merge into Z, then Z produces a

tornado, the tornado is attributed to neitherX nor Y.

There is no obvious way to determine which of X and

Y is primarily responsible for the characteristics of Z

that led to tornadogenesis. See example 1 in Fig. 4.

After the procedure shown in Fig. 4, any storm object

linked to a tornado in the next hour is labeled ‘‘yes’’; all

others are labeled ‘‘no.’’ Among the storm objects la-

beled no, two types are removed from the dataset:

1) storms that merge into a tornadic successor (like X

and Y in rule 3 above), because they cannot be

confidently labeled yes or no (it is unclear which

storm, if either, is responsible for tornadogenesis), and

2) storms with a successor in the next hour that passes

within 10km (the maximum tornado-to-storm dis-

tance) of the land boundary of the CONUS (NWS

reports are generally not collected outside this area).

d. Creation of predictors

One data point (or example) for ML represents one

storm object. The label (yes or no) indicates whether the

storm is tornadic in the next hour, and the predictors are a

storm-centered radar image and proximity sounding.

Details are listed in Table 3. The storm-centered radar

image comes from either MYRORSS or GridRad, and

its horizontal center is the horizontal center of the storm

object. The storm-centered radar image is on an equi-

distant grid with storm motion pointing to the right

(in the 1x direction). Heights in the storm-centered

grid are ground relative, whereas heights in the native

(MYRORSS or GridRad) grid are sea level relative.We

interpolate to ground relative because storms over high

terrain have a lot of missing data near sea level, leading

to poor CNN predictions. For both MYRORSS and

GridRad, the storm-centered grid has a horizontal ex-

tent of 48 km3 48km. Horizontal spacing of the storm-

centered grid is chosen so that resolution is not lost

during interpolation from the native grid. For example,

the native grid for GridRad has 0.02088 spacing, leading
to 2.31-kmmeridional spacing and at least 1.52-km zonal

spacing everywhere south of the Canadian border. Thus,

resolution is preserved by 1.5-km horizontal spacing in

the storm-centered grid.

Note that the storm-centered radar image has three

spatial dimensions for GridRad and two spatial dimensions
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for MYRORSS (Table 3). Thus, the associated CNNs

perform 3D and 2D convolution, respectively. The native

MYRORSS dataset has 3D reflectivity and 2D azimuthal

shear, so we tried training CNNs that perform 3D convo-

lution for reflectivity and 2D convolution for azimuthal

shear. However, the approach presented here led to better

predictions.

To create proximity soundings, we use the follow-

ing procedure for each example. Let the example

be storm S at forecast time t. Note that proximity

soundings are created separately for MYRORSS and

GridRad examples.

1) Extrapolate S to time t1 30min and find the nearest

RAP grid point to the center of the extrapolated

storm.7 Call this grid point g.

2) Take the sounding from grid point g in the latest

RAP analysis before t. This corresponds to previous-

neighbor interpolation in time and nearest-neighbor

interpolation in space.

Higher-order interpolation methods, such as linear

and cubic, sometimes generate physical inconsistencies

such as large supersaturations, because each variable in

the sounding is interpolated separately. The simple

method used preserves the entire sounding from one

grid point at one time, which prevents such inconsis-

tencies. Also, by using RAP data from at least 30min

before the extrapolated storm, convective contamina-

tion (where the sounding for storm S is influenced by

storm S) is usually prevented.

Native RAP variables needed to create a sounding are

u wind, y wind, temperature, and relative humidity.

However, to train CNNs, we replace temperature in this

set with virtual potential temperature uy and specific

humidity. The uy is important because static stability is

determined by its vertical profile alone (stable if uy in-

creases with height and unstable otherwise), and specific

humidity is important because it is the total mass con-

centration of water vapor. We interpolate all five vari-

ables to heights from 0 to 12kmAGL (Table 3). We use

ground-relative heights here to prevent the use of un-

derground height levels, which contain data extrapo-

lated from the lowest atmospheric levels.

We split both MYRORSS and GridRad examples

into training, validation, and testing data (Table 2). We

leave a one-week gap between each pair of consecutive

datasets, which ensures that the storms and synoptic

patterns in one dataset are not temporally autocorre-

lated with those in another. The role of training data is to

fit weights in the CNNs; the role of validation data is to

fit hyperparameters, defined as ML settings that must be

chosen before training and cannot be fit during training;

and the role of testing data is to evaluate the final model

on data independent of the training and validation.

We normalize predictors via Eq. (2): x is the original

value, x is the mean over training data, s is the stan-

dard deviation over training data, and z is the nor-

malized value:

z5
x2 x

s
. (2)

We apply the equation independently to each variable

in each dataset (eight for MYRORSS examples and

nine for GridRad examples; Table 3). It is crucial

that x and s be computed with training data only. If

validation/testing data were used, the normalized

training data would contain information from the

validation/testing data and the three sets would no

longer be independent. Normalization ensures that all

predictors have equal variance (1.0) in the training

data, which prevents the CNN from unduly focusing

on predictors with higher variance, which is often due

to physical units. For example, in the GridRad train-

ing data, reflectivity has a variance of 212 dBZ2 while

vorticity has a variance of 3.0 3 1027 s22.

4. Hyperparameter experiment (finding the
best CNNs)

This section describes the experiment used to find the

best CNN hyperparameters. The experiment takes the

form of a grid search (section 11.4.3 of Goodfellow et al.

2016), which has the following procedure: 1) Decide the

set of experimental hyperparameters and values to try

for each (Table 4). 2) For each combination of values,

train a model on the training data and evaluate it on

the validation data. 3) Select the model that per-

forms best on validation data. 4) Evaluate the selected

model on testing data. Furthermore, all CNNs in this

TABLE 2. Training, validation, and testing periods for the

MYRORSS and GridRad datasets.

Dataset Time period

MYRORSS training 1 Jan 2005–24 Dec 2008

MYRORSS validation 1 Jan 2009–24 Dec 2010

MYRORSS testing 2011

GridRad training 1 Jan 2012–24 Dec 2014

GridRad validation 2015–18

GridRad testing 1 Jan 2011–24 Dec 2011

7 Note that t 1 30min is the midpoint of the 1-h-long prediction

window. Extrapolation is done by assuming that the storm will

maintain its current velocity, estimated by a third-order backward

difference.
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work are trained with the Keras Python package (Chollet

et al. 2020).

a. Fixed hyperparameters (used for all CNNs)

CNN training is subdivided into stages called epochs.

In each epoch, multiple batches of training examples are

presented to the CNN. After each batch, weights in the

CNN are updated via the Adam optimizer (Kingma and

Ba 2014), in an effort to minimize the loss [Eq. (1)].

After each epoch, the loss is computed for both training

and validation data, which can be used to diagnose

overfitting (when loss continues to decrease for the

training data but begins to increase for the validation

data). Specifically, the CNNs are trained for 100 epochs,

with 32 batches per epoch and 1152 examples per batch.

These numbers are chosen to be large enough that vali-

dation loss always converges to aminimumbefore training

is complete. This occurs for every CNN in the experiment,

usually well before the 50th epoch, at which point they

begin to overfit. Thus, after training is complete, weights

are restored to the epoch with minimum validation loss.

Examples in each training batch are drawn randomly

from different time steps, which maximizes diversity

within the batch—that is, ensures that most examples

come from different storm cells and different synoptic

situations—which reduces overfitting. Also, training

data are undersampled so that each batch contains an

equal number of tornadic and nontornadic examples.

Without undersampling, the CNNs would have little

incentive to predict probabilities �0, because the

small fraction of tornadic examples would have little

effect on the loss. Undersampling is used only for

training.When a CNN is evaluated on the validation or

testing data, undersampling is not used, so the evalu-

ation scores fully reflect the difficulty of predicting a

rare event.

Complete details on CNN architecture are shown in

sectionD of the online supplemental material. Note that

the CNNs perform convolution and pooling over both

radar images and proximity soundings.

b. Experimental hyperparameters

Theexperiment, conducted separately for theMYRORSS

and GridRad models, involves four hyperparameters

(Table 4). All hyperparameters control overfitting,

which is a serious problem for tornado prediction, due

to uncertainty in the predictors (radar and NWP data)

and labels (tornado reports). The first hyperparameter

is the number of dense layers, which is the main control

on the number of CNN weights. The number of con-

volutional layers is fixed and chosen to yield a final

domain size of 4–6 grid cells in each direction (Figs. 1 and

2). We have found that smaller domains (e.g., 2 grid cells

per direction) do not contain enough spatial information

to make skillful predictions, while larger domains (e.g.,

10 grid cells per direction) lead to toomany weights in the

dense layers, whichmakes trainingmore computationally

expensive and increases the risk of overfitting.

The second hyperparameter is dropout rate d. For

each training example and each dense layer, dropout

(Hinton et al. 2012) randomly zeroes out fraction d of

the layer’s outputs.8 This forces the weights in a given

layer to evolve more independently, which reduces

overfitting. Dropout is used only during training and for

all dense layers except the last (the last dense layer has

only one output, which is tornado probability). The third

hyperparameter is L2 weight l, which controls the

strength of L2 regularization (Hoerl and Kennard 1970,

1988). In L2 regularization, the term l SSW is added to

the loss function [Eq. (1)] during training, where SSW is

the sum of squared weights in all convolutional layers.9

This encourages the models to learn smaller weights.

Large weights make the models unstable, causing sharp

TABLE 3. Summary of processed input data (‘‘images’’ 5 storm-centered radar images). One example for ML contains a proximity

sounding and either an MYRORSS image or a GridRad image, with all variables listed in the rightmost column.

Dataset Grid size

Horizontal

spacing (km)

Heights

(km AGL) Variables

MYRORSS images 128 rows; 128 columns 0.375 — Low-level azimuthal shear, midlevel

azimuthal shear, and reflectivity at

1, 2, . . . , 12 km AGL

GridRad images 32 rows; 32 columns; 12 heights 1.5 1, 2, . . . , 12 Reflectivity, spectrum width, vorticity,

and divergence

Proximity soundings 49 heights — 0, 0.25, . . . , 12 u wind, y wind, relative humidity,

specific humidity, and virtual

potential temperature uy

8 Dropout multiplies the remaining outputs by 1/d so that the

sum remains the same.
9 Regularization can also be applied to the dense layers, but,

since we already use dropout for the dense layers, we believe

that applying both types of regularization in tandem would be

superfluous.
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changes in the output (prediction) for small changes in

the inputs (predictors).

The fourth hyperparameter is data augmentation

(section 5.2.5 of Chollet 2018), the practice of applying

small perturbations to the predictors while assuming

that the label (tornadic or not) remains the same. This

reduces overfitting by preventing the CNN from learn-

ing relationships that are too specific. We apply 17 per-

turbations to the radar image for each example:

d horizontal rotations (about the z axis) of 1158, 2158,
1308, and 2308;

d horizontal translations of three grid cells in eight

directions spaced equally from 08 to 3158; and
d five additions of Gaussian noise, each with a standard

deviation of 0.1 (since all predictors are normalized to

the same scale [Eq. (2)], the magnitude of this effect is

the same for all predictors).

The perturbations are applied separately, turning one

example into 18 (the original example plus 17 perturbed

ones). When data augmentation is turned on, each

training batch contains 64 real examples (32 tornadic

and 32 nontornadic), perturbed 17 times each to create a

batch of 1152. When data augmentation is turned off,

each training batch contains 1152 real examples (576

tornadic and 576 nontornadic). The exact perturbations

were decided by a previous experiment (not shown).

After training, we rank the CNNs byAUC (Metz 1978)

on the validation data. We also compute probability of

detection (POD), false-alarm ratio (FAR), frequency

bias, and CSI, defined in Eqs. (1)–(4) of Roebber (2009).

All scores other than AUC are based on deterministic

predictions, whereas the CNNs output probabilities. To

convert from probabilistic to deterministic, we use the

probability threshold that maximizes validation CSI (this

threshold is different for each CNN). Thus, the proba-

bility threshold is treated as a hyperparameter: chosen on

the validation data, then frozen.

5. Results

Figures E1 and E2 in the online supplemental mate-

rial show performance of the 100 GridRad models on

validation data. The best GridRad model uses data

augmentation and has a dropout rate of 0.5 (the median

value attempted), L2 weight of 1023 (minimum at-

tempted), and two dense layers (maximum attempted).

In general, the GridRad models perform best with two

dense layers and data augmentation turned on. The

other two hyperparameters,L2 weight and dropout rate,

have a much smaller effect on performance. This sug-

gests that data augmentation is the most effective reg-

ularization method for GridRad data. Although data

augmentation increases effective sample size much less

than it increases nominal sample size (because the

17 perturbed examples created from each original

example are highly correlated), it clearly increases

effective sample size enough to improve predictions

on independent data. Figures E3 and E4 in the online

supplemental material show performance of the 100

MYRORSSmodels on validationdata. ThebestMYRORSS

model uses data augmentation and has a dropout rate of

0.75 (maximum attempted),L2 weight of 10
22.5 (second-

lowest attempted), and two dense layers (maximum at-

tempted). As for GridRad, the MYRORSS models

generally perform best with two dense layers and data

augmentation turned on, but here the difference is less

dramatic.

Figures 5a and 5b shows performance of the best

MYRORSS and GridRad models on testing data. Each

point in the receiver-operating-characteristic (ROC)

curve or performance diagram (Roebber 2009) corre-

sponds to one probability threshold. Event frequency

(percentage of storms that are tornadic in the next hour)

is 3.52% in the GridRad testing data and 0.24% in the

MYRORSS testing data. AUC is significantly higher for

the MYRORSS model, likely because the MYRORSS

dataset contains more trivial correct nulls. Specifically,

because the MYRORSS data are available for every

day, while the GridRad data are available primarily for

days with at least one tornado, the MYRORSS data

contain more easy-to-predict nontornadic storms (e.g.,

storms in the middle of winter and other environments

that are very nonconducive to tornadoes). AUC . 0.9

for both models, which is generally considered the thresh-

old for ‘‘excellent’’ performance (e.g., Luna-Herrera et al.

2003; Muller et al. 2005; Mehdi et al. 2011). Because the

ROC curve is insensitive to event frequency, this threshold

can be used across prediction tasks. No such threshold

exists for the performance diagram, which is highly

sensitive to event frequency, as shown by the difference

between MYRORSS and GridRad models. The best

point in the performance diagram is the top right (where

CSI5 1.0), and the worst point is the bottom left (where

CSI5 0.0). CSI is sensitive to event frequency, because a

high CSI requires a high POD and low FAR. In other

words, to achieve a high CSI, the model must correctly

predict a large fraction of events without producing

TABLE 4. Values attempted for hyperparameter experiment.

Hyperparameter Values

Dropout rate 0.250, 0.375, 0.500, 0.625, and 0.750

L2 weight 1023, 1022.5, 1022, 1021.5, and 1021

Data augmentation On, off

No. of dense layers 1, 2
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a large number of false alarms, which becomes more

difficult as the event frequency decreases. Testing and

validation AUC for the MYRORSS model are ap-

proximately equal (cf. Fig. 5 with Fig. E3 in the online

supplemental material), but for the GridRad model,

testing AUC is ;0.04 higher than validation AUC (cf.

Fig. 5 with Fig. E1 in the online supplemental material).

This suggests that perhaps 2011 is an abnormally easy

year for the GridRad model, which is a slight caveat.

Why 2011 is not abnormally easy for the MYRORSS

model as well requires future investigation.

The stars in Fig. 5 show the chosen probability

threshold (that which maximizes validation CSI) for

each model, and Table 5 shows contingency tables cre-

ated with this threshold. This threshold nearly maxi-

mizes CSI on the testing data as well (shown in the

performance diagram), but it leads to an unacceptably

low POD (0.27 for MYRORSS and 0.48 for GridRad)

for a costly event such as tornadoes. Considering that false

negatives have a much greater cost than false positives, if

one could assign numerical values to these costs, one could

choose the probability threshold that minimizes cost. This

would result in a lower threshold, causing the star to move

toward the top right of the ROC curve and top left of the

performance diagram—yielding a lower CSI and higher

POD, POFD, FAR, and frequency bias.

Figures 5c and 5d contain testing results for strong

tornadoes only (EF21), which suffer from less under-

reporting bias, as discussed at the end of section 3a.

Table 6 shows the corresponding contingency table for

each model. The testing sets used in Figs. 5c and 5d are

created by simply removing EF0 and EF1 tornadoes

from those used in Figs. 5a and 5b. This decreases the

GridRad event frequency to 1.36% and the MYRORSS

FIG. 5. Performance of MYRORSS and GridRad models on testing data. Dark lines show the mean, and light

shading shows the 95% confidence interval, determined by bootstrapping 1000 times. The star corresponds to the

probability threshold that maximizes CSI on the validation data. Dots correspond to probability thresholds p* of

0.0, 0.1, . . . , 1.0. Shown are (left) the ROC curve for (a) all tornadoes and (c) strong tornadoes only (AUC is area

under the curve, given as a 95% confidence interval; p* increases from 0.0 at top right to 1.0 at bottom left) and

(right) the performance diagram for (b) all tornadoes and (d) strong tornadoes only (AUPD is area under the curve,

given as a 95% confidence interval; p* increases from 0.0 at top left to 1.0 at bottom right).
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event frequency to 0.06%. Assuming that model skill

does not vary with tornado strength, one would expect

this change to yield a similar ROC curve and worse

performance diagram. However, the ROC curve im-

proves significantly, and the performance diagram

remains roughly the same. This suggests that model

skill improves with tornado strength, which is likely

caused by two factors. First, strong tornadoes are la-

beled more accurately, since they suffer from less un-

derreporting bias; second, strong tornadoes generally

have clearer signatures, especially in the radar image.

As mentioned in the introduction, an ML model

called ProbSevere is currently used annually in the

HWT, where it has received positive feedback from

forecasters. ProbSevere forecasts the probability of

any severe weather on a storm-by-storm basis. As

shown in Fig. 6 of Cintineo et al. (2018), ProbSevere

achieves a CSI of 0.27 and POD of 0.55 with 4.94%

event frequency. Figure 5 suggests that the GridRad

model could achieve the same CSI with a lower event

frequency (3.52%) and higher POD (;0.7). Although

the comparison is not completely fair (ProbSevere

predicts all severe weather and uses a real-time ver-

sion of MYRORSS, which is less quality controlled),

we believe the evidence is sufficient to suggest that

our models would be useful in an operational setting.

Figures 6 and 7 break down the testing performance of

the two models by time. As the number of tornadic ex-

amples increases, POD generally increases while FAR

generally decreases, causing CSI to increase [CSI21 5
POD21 1 (1 2 FAR)21 2 1]. In terms of AUC and

CSI, both models perform best from April to July and

during the afternoon and evening (the hours of 1800–

0500 UTC, which end at 0559:59 UTC), when most

tornadoes occur. In terms of AUC only, performance

is excellent (.0.9) for most hours and months. A

notable exception is the GridRad model during winter

(December, January, and February). These months have

the fewest examples (2644, 975, and 3029, respectively),

and nearly the fewest tornadic examples (50, 18, and 82,

respectively), of all months in the GridRad testing data.

This is also true for the training data, which means that

relationships learned during training were controlled

mostly by the other (nonwinter) months, at the cost of

performance in winter. The MYRORSS model also

performs worst in winter. Both models have peaks

in CSI for November and the hour of 1000 UTC (1000:

00–1059:59 UTC). The peak in November can be

explained by a peak in tornadic examples, but the

one at 1000 UTC cannot. This peak is generally

not significant (i.e., the confidence interval for 1000

UTC generally overlaps with confidence intervals

for the adjacent hours), so it may be due merely to

sampling error.

Figures 8 and 9 break down the testing performance of

the two models by location, into 100-km grid cells. Grid

cells with no tornadic examples are not shown, because

this causes the scores to degenerate. Most examples and

most tornadic examples occur in the southeast quadrant

of the CONUS, with a secondary maximum in tornadic

examples in the southern Great Plains. In most areas,

the GridRad model has an AUC . 0.8 (considered

‘‘good’’ in the same papers that define 0.9 as ‘‘excel-

lent’’) and the MYRORSS model has an AUC . 0.9.

Areas with lower AUC generally have very few tornadic

examples, thus very few examples with which to com-

pute POD (one of the inputs to AUC), thus a large

sampling error. For examples of this effect, see the three

grid cells on the northern border of Kentucky in Fig. 8.

Both models perform poorly west of the Rockies, which

is likely due to a combination of few tornadoes and poor

radar coverage. Complex orography and a less dense radar

network ensure that many areas are covered by only one

or two radars, leading to poor estimates of all variables.

Many areas with few tornadoes in the GridRad data

experiencemany tornadoes both climatologically (https://

www.spc.noaa.gov/wcm/climo/alltorn.png) and in the

MYRORSS data (Fig. 9). This suggests that expanding

the GridRad dataset to include tornadic storms in these

areas—such as eastern Colorado, the northern Great

TABLE 5. Contingency tables for MYRORSS and GridRad

models on all testing data. Probabilities (raw CNN output) are

converted to deterministic forecasts using the CSI-maximizing

probability threshold, 88.95% for the GridRad model and

95.18% for the MYRORSS model.

Observation

Forecast Yes No

GridRad model

Yes 2193 2515

No 2418 123 829

MYRORSS model

Yes 2642 6487

No 7221 4 143 227

TABLE 6. As in Table 5, but for strong (EF21) tornadoes only.

Observation

Forecast Yes No

GridRad model

Yes 1139 2455

No 601 123 889

MYRORSS model

Yes 1254 6449

No 1342 4 143 265
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Plains, and the Ohio River valley—would greatly im-

prove performance there.

Figures 10–13 show extreme cases: the 100 best hits,

worst false alarms, worst misses, and best correct nulls in

the testing data (Table 7). These sets are constructed

separately for the MYRORSS and GridRad models,

with one constraint: a set cannot contain multiple ex-

amples from the same storm.10 If the best hits or worst

false alarms contain multiple time steps from one storm,

only that with the highest probability is kept. Similarly,

if the worst misses or best correct nulls contain multiple

time steps from one storm, only that with the lowest

probability is kept. Thus, each set contains examples

from 100 different storm cells, which increases the di-

versity within each set by decreasing autocorrelation.

The composites shown in Figs. 10–13 are created via

probability-matched means (PMM; Ebert 2001), which

retains spatial structure better than taking the simple

mean at each grid point.

Figure 10 shows the radar fields for extreme GridRad

cases. For the sake of brevity, only 3 of the 12 heights

are shown: 2, 6, and 10 km AGL. These will hence-

forth be called low level, midlevel, and upper level.

The ‘‘best hits’’ composite contains high reflectivity

throughout the column, strong low-level convergence,

and strong upper-level divergence, suggesting a strong

updraft; high vorticity and spectrum width throughout

the column, suggesting a strong mesocyclone; and a

hook echo in the low-level reflectivity field, which

suggests the presence of a rear-flank downdraft (RFD)

and is a signature often associated with tornadoes

FIG. 6. Monthly and hourly performance of the GridRad model on testing data. Dark lines show the mean, and

light shading shows the 95% confidence interval, determined by bootstrapping 1000 times. Shown are (left) AUC,

CSI, and number of examples and (right) POD, FAR, and number of tornadic examples (or ‘‘events’’) (a),(c) by

month and (b),(d) by hour.

10 Two storm objects are considered to be part of the same storm

if their tracks are connected at all, by any number of splits or

mergers.
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(Davies-Jones et al. 2001; Rhyzkov et al. 2005; Markowski

and Richardson 2009, 2014). Overall, the storm appears

to be a supercell, the type responsible for most torna-

does and especially EF2 1 tornadoes (Table 2 of Smith

et al. 2012). Also, the storm appears to be discrete

(isolated from other storms), at least on its right and rear

flanks. Although weak tornadoes are often produced

by supercells in clusters, strong tornadoes are gener-

ally produced by discrete supercells (Table 2 of Smith

et al. 2012).

The worst false alarms look very similar to the best

hits, with one of the few notable differences being

the absence of a low-level hook echo. We considered

the possibility that these storms are not really false

alarms—that is, produced unreported tornadoes—which

is a known issuewith theNWS storm reports, as discussed

in section 3a. However, this explanation is implausible,

because (i) most of these storms occur in the evening and

near towns; (ii) 76 of the 100 storms are associatedwith an

NWS tornado warning, and the NWS generally seeks out

reports to verify warnings that they have issued. Rather,

we believe that the similarity between the best hits and

worst false alarms is due mainly to two factors. First, tor-

nadoes are usually on the order of 100m across, so

GridRad and MYRORSS have insufficient resolution

to represent tornadoes and other relevant circulations.

Second, ‘‘tornado’’ and ‘‘nontornado’’ are discrete la-

bels applied to a continuous spectrum of phenomena.

Some funnel clouds very nearly reach the surface, while

some tornadoes touch down for only a few seconds and

produce minimal damage, but they are still labeled

tornado and nontornado, respectively, which causes

them to be treated as completely disparate phenomena.

The worst misses are shallow and elongated storms

with smaller values of reflectivity, spectrum width, vor-

ticity, low-level convergence, and upper-level divergence.

By inspection of the 100 individual storms, we have found

that most either (i) are weak storms that subsequently

intensify rapidly, allowing them to produce tornadoes in

the next hour, or (ii) are embedded in a quasi-linear

convective system (QLCS). The second failure mode

is more common than the first and is well known to

FIG. 7. As in Fig. 6, but for MYRORSS.
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meteorologists (Brotzge et al. 2013; Anderson-Frey

et al. 2016). Note that the best correct nulls are generally

weak and disorganized. By inspection of the 100 indi-

vidual storms, we have found that most are nondomi-

nant cells in a mesoscale convective system (MCS).

Also, 19 of the 100 storms occur in the outer rainbands

of Hurricane Irene.

Figure 11 shows the radar fields for extremeMYRORSS

cases. Overall, each composite is very similar to its

counterpart in the GridRad data, except that the best

hits for MYRORSS contain a much fainter hook echo.

Conclusions based on inspecting individual storms

also hold for the MYRORSS data. First, false alarms

generally occur in the evening and near towns, and 47 of

the 100 are associated with NWS tornado warnings,

which suggests that most of these storms are truly non-

tornadic. Second, the worst misses are mostly QLCS

cells, with some early-stage supercells. Third, the best

correct nulls are mostly nondominant MCS cells.

Figure 12 shows the soundings for extreme GridRad

cases. For all composites other than the best correct

nulls, the soundings are much more similar than the

radar images, which suggests that the radar images

are generally more important for prediction. All three

soundings have a slight surface-based temperature

inversion, above which the profile is conditionally

FIG. 8. Regional performance of the GridRad model on testing data: (a) number of examples, (b) num-

ber of tornadic examples (or ‘‘events’’), (c) AUC, (d) CSI, (e) POD, and (f) FAR. Each grid cell is

100 km 3 100 km.
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unstable up to the high troposphere; a dry nose

around 700 hPa; and a strongly veering wind profile,

with easterly surface winds veering sharply to southerly

in the lowest 100 hPa and then to westerly in the high

troposphere. This corresponds to high wind shear, which

is crucially favorable for tornadoes (Markowski and

Richardson 2009, 2014; Anderson-Frey et al. 2016). The

surface-based inversion is usually caused by other

storms that have recently moved over the area, as many

storms occur in larger-scale convective systems. The

main difference among the three soundings is that the

worst misses have lower near-surface temperature

and humidity, yielding less instability, and weaker

winds aloft, yielding less wind shear. Both of these

relationships are consistent with previous studies on

the difference between supercell and QLCS environ-

ments (e.g., Tables 1–2 of Thompson et al. 2012).

Compared to the other three composites, the best cor-

rect nulls have a stronger temperature inversion and

much less low-level wind shear. By inspection of the 100

individual storms, many occur near fronts, causing the

wind shift between 700 and 800mb in the composite

sounding.

Figure 13 shows the soundings for extremeMYRORSS

cases. Each composite except the best correct nulls is very

similar to its counterpart in the GridRad data. For the

best correct nulls, the MYRORSS sounding has a much

stronger temperature inversion, and much less near-

surface moisture, than the GridRad sounding. The dif-

ference occurs because theMYRORSS dataset contains

FIG. 9. As in Fig. 8, but for MYRORSS.
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many more nontornadic storms than GridRad, allowing

for more extreme nontornadic cases.

6. Summary and future work

We used convolutional neural networks, a type of

deep-learning method, to predict the probability that a

storm will be tornadic in the next hour. The predictors

were a proximity sounding and storm-centered radar

image, the latter from either theMYRORSS or GridRad

dataset. For both MYRORSS and GridRad, CNNs per-

formed best when trained with data augmentation, the

practice of applying small perturbations to the pre-

dictor fields while assuming that the label (tornadic

or nontornadic) remains the same. When evaluated

on independent testing data, the MYRORSS model

achieved an AUC of 0.97 and CSI of 0.17, while the

GridRad model achieved an AUC of 0.93 and CSI of

0.31. The difference in AUC is caused by a greater

number of trivial nulls (easy-to-predict nontornadic

storms) in the MYRORSS dataset, while the differ-

ence in CSI is caused by a lower event frequency in

the MYRORSS dataset. Specifically, testing data for

MYRORSS and GridRad have event frequencies of

0.24% and 3.52%, respectively. Results for strong tor-

nadoes (EF21) are slightly better than for all tornadoes,

which suggests that model skill increases with tornado

strength. Comparison with ProbSevere, an ML model

currently used for operational severe weather prediction,

suggests that our models would be useful operationally.

FIG. 10. Radar fields for extreme GridRad cases. Storm motion points to the right. Each image is a PMM composite over

100 examples.
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To better understand the models, we plotted storms

yielding the best and worst predictions. For both the

MYRORSS and GridRad models, the best hits are tor-

nadic supercells; the worst false alarms are nontornadic

supercells; the worst misses are mostly cells in quasi-

linear convective systems, whereas some are early-stage

supercells that subsequently undergo rapid intensifica-

tion and tornadogenesis; and the best correct nulls are

FIG. 11. As in Fig. 10, but for MYRORSS.
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mostly nondominant cells in mesoscale convective

systems. Training models with both MYRORSS and

GridRad data demonstrates the generalizability of our

methods and results, especially patterns leading to the

best and worst predictions. These patterns are very sim-

ilar for the two models, even though they use different

radar datasets and have quite different architectures (the

MYRORSS model has five layers that perform 2D con-

volution, and the GridRad model has three layers that

perform 3D convolution). Future work will use special-

ized ML-interpretation methods, such as those discussed

in McGovern et al. (2019), to compare physical rela-

tionships learned by the two models.

In the future we also plan to adapt the models de-

veloped herein for an operational setting such as the

HWT, where they could be evaluated in real time by

forecasters. Although model development (training,

validation, and testing) is computationally expensive,

applying either trained CNN in real time takes ;5min

per radar time step on a desktop computer, including all

preprocessing. This could easily be shortened by paral-

lelizing across multiple cores and optimizing the code

that creates proximity soundings, which takes more than

half of the ;5min. Radar data would come from the

Multi-Radar Multi-Sensor (MRMS; Smith et al. 2016)

dataset, the real-time version of MYRORSS, which is

used by the ProbSeveremodel. The two datasets may be

similar enough that theMYRORSS-trainedmodel could

be applied directly toMRMS data without retraining, but

this will be investigated. Along with the model’s predic-

tions, we plan to showML-interpretation output, such as

saliency or class-activation maps (McGovern et al. 2019).

FIG. 12. Soundings for extreme GridRad cases. Each sounding is a PMM composite over 100 examples. The lowest

data point is at the surface, and the spacing between subsequent points is 250m.
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Webelieve that explaining the model’s predictions in this

way would increase forecaster trust and help them to

identify failure modes (e.g., cases where the interpreta-

tion maps are physically unrealistic).

Future work will also include the following activities.

The first is developing spatially and temporally depen-

dent CNNs to improve predictions for spatial regions,

times of day, and times of year that are currently poor.

However, most of these regions and times have few

tornadic examples with which to train a model, so per-

formance improvements may bemarginal. The second is

expanding the scope of near-storm environment data

used by the models. Instead of proximity soundings, we

hope to train with full 3D and 4D data, which might

allow the models to better capture relevant mesoscale

features. The last two are improving the prediction of

FIG. 13. As in Fig. 12, but for MYRORSS.

TABLE 7. Definitions of extreme cases. ‘‘Probability’’ is the next-hour tornado probability forecast by the CNN. ‘‘Mean GridRad

probability’’ is the mean forecast probability from the GridRad model over the 100 cases, and likewise for MYRORSS.

Set Definition

Mean GridRad

probability

Mean MYRORSS

probability

Best hits Tornadic examples with the highest probabilities 99.2% 99.6%

Worst false alarms Nontornadic examples with the highest probabilities 98.8% 99.6%

Worst misses Tornadic examples with the lowest probabilities 8.6% 11.9%

Best correct nulls Nontornadic examples with the lowest probabilities 0.004% 0.04%
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QLCS tornadoes and finding new ways to alleviate the

rare-event problem so that a better balance of POD and

FAR can be achieved.
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